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How a student conceives the nature of a subject they study affects the approach they take to that 
study and ultimately their learning outcome. This conception is shaped by prior experience with the 
subject and has a lasting impact on the student's learning. For subsequent education to be effective, 
an instructor must link the current topic to the student's prior knowledge. Short of assessing their 
students, an instructor relies on their subjective experience, intuitions, and perceptions about this 
prior knowledge. These perceptions shape the educational experience. The current study explores, in 
the context of undergraduate mathematics, the alignment of instructors' perceptions of student 
conceptions of mathematics and the students' actual conceptions. Using a version of the Conceptions 
of Mathematics Questionnaire, instructors of lower-year courses were found to have overestimated, 
while upper-year course instructors underestimated, their students' fragmented conceptions of 
mathematics. Instructors across all years underestimate their students' cohesive conceptions. This 
misalignment of perspectives may have profound implications for practice, some of which are 
discussed. 

 
It is now well established that the perceptions a 

student has of a subject they study affects their 
approach to studying, and ultimately their performance 
in, that subject (Biggs & Tang, 2011; Trigwell & 
Prosser, 1991). A deeper, connected view of the subject 
correlates to a deeper approach to study and better 
outcomes, both in terms of quantitative performance 
(e.g., assessment scores) and conceptual gains (Trigwell 
& Prosser, 1991). Fragmented, superficial perspectives 
often result in less desirable outcomes. Given this 
evidence on the impact of a student's perspective of a 
subject on their performance in that subject, a key to 
improving student performance may be in fostering 
shifts in their perceptions. That is, students may come 
to view a subject more cohesively if the learning 
situations they experience emphasize the cohesive 
structure of the subject. A major barrier to 
implementing this shift may lie with the instructors. Do 
instructors actually know how their students view their 
subject? An exploration of this question in the context 
of undergraduate mathematics is the topic of this study. 

Fragmented conceptions of a subject include viewing 
the subject as a disjointed collection of facts and/or 
operations (Crawford, Gordon, Nicholas, & Prosser, 1994; 
Crawford, Gordon, Nicholas, & Prosser, 1998a; Crawford, 
Gordon, Nicholas, & Prosser, 1998b). These facts and/or 
operations can be applied to solve problems, but a larger, 
complete picture is lacking. Students who hold fragmented 
conceptions of a subject learn topics in isolation and 
generally lack connections between these topics. A cohesive 
conception sees the facts as interrelated, comprising a 
consistent and logical totality. Applications still remain, and 
a cohesive view allows the student to draw on a richer set of 
tools for use with these applications. 

In terms of mathematics, the subject considered in 
the present study, fragmented and cohesive 

conceptions, have for some time played a central role in 
the mathematics education discourse. Fragmented 
conceptions of mathematics are closely linked to the 
instrumental understanding of Skemp (1976) and the 
procedural knowledge of Hiebert and Lefevre (1986). 
With this type of understanding a student knows that a 
procedure, for example, is appropriate given the context 
but is not necessarily able to apply the procedure 
efficiently or flexibly. The procedure is for the student 
an isolated and rigid construct. For example, a student 
may be able to solve a system of equations consistently 
with a certain algorithm but not understand the 
algorithm deeply enough to modify it for use in a given 
situation (Star, 2005). Cohesive conceptions resemble 
Skemp's (1976) relational understanding and Hiebert 
and Lefevre's (1986) conceptual knowledge. This level 
of understanding involves a richer experience of 
mathematics. Students with this level of understanding 
comprehend why a procedure is appropriate for a given 
context and are able to tailor the procedure to make it 
more efficient. These students are also able to draw 
upon a number of procedures, perhaps innovating their 
own, and decide upon which is most appropriate. 

Of course, a subject like mathematics comprises 
both procedures and concepts, and a university 
mathematics curriculum requires students to be 
proficient in both. How these two constructs interact 
and develop in a student's mind is still a matter of 
debate, but it is generally agreed upon that solid 
conceptual knowledge facilitates procedural knowledge 
more easily than the reverse. The most current research 
suggests that both are best developed in an iterative 
process, with gains in procedural knowledge balanced 
with gains in conceptual knowledge, and vice versa 
(Rittle-Johnson & Schneider, 2014). However, if 
students view mathematics as a disjointed collection of 
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procedures and facts—that is, if they have a fragmented 
view of mathematics—without regard to the greater 
conceptual structure of mathematics, this balancing of 
procedures and concepts may be a difficult task. 

How students view a subject also affects their approach 
to learning that subject. Students who hold a fragmented 
view of a subject tend to adopt surficial approaches to study, 
focusing on memorization and the acquisition of facts and 
procedures for immediate use. The act of study for such 
students is geared toward the completion of tasks, involves 
lower-level skills, such as memorization, and seldom 
involves longer-term retention (Biggs & Tang, 2011). 
Students with a cohesive view, on the other hand, are more 
likely to take a deep approach to study, focusing on 
understanding and seeing the subject as a connected whole; 
see (Prosser & Trigwell, 1999) for a review of the early 
literature and (Biggs & Tang, 2011) for an updated review. 
These approaches to study translate into different learning 
outcomes (Biggs, 1979; Marton & Säljö, 1976). Deep 
approaches have been found to correlate with higher course 
grades—though not always (Campbell & Cabrera, 2014; 
Choy, O’Grady, & Rotgans, 2012; Trigwell & Prosser, 
1991)—and greater conceptual gains, while surficial 
approaches often result in less desirable outcomes (Watkins, 
2001; Zeegers, 2001).  

In this current study, students and their instructors 
were given a survey designed to measure their 
conceptions of mathematics. While the students were 
asked to complete it as truthfully as possible, the 
instructors were asked first to reflect on their current 
class and form an image of their “archetypal” or 
“average” student and then to complete the survey as 
they think this archetypal student would. The intention 
with this exercise was to quantify a practice commonly 
done by mathematics instructors. Anecdotally—though, 
also see (Engelbrecht, Harding, & Potgieter, 2005)—
instructors often refer to their students using statements 
such as, “My students do not understand this concept,” 
or, “They think of math as just pushing numbers 
around.” These perceptions may be partially informed 
by responses by students on assessments, but they also 
comprise instructor perception bias. The educational 
experiences offered by the instructors are, in turn, 
shaped by these perspectives of their students. A 
companion study (Maciejewski & Merchant, 2015) 
evaluates the relationship between the questionnaire 
scores reported here, study approaches taken by the 
students, and resulting course grade.  

The results of this study indicate a divide 
between how instructors perceive their students' 
view the nature of mathematics and how the 
students actually view mathematics. The direction 
of this divide, whether instructors over or 
underestimate aspects of their students' conceptions, 
is dependent upon the level of the course being 
taught by the instructor.  

Methods 

Participants 

An email invitation to participate in the current 
study was circulated in the second regular semester of 
the 2013/2014 school year to all members of the 
mathematics department of a major Canadian research 
university who were currently teaching a course. In 
total, 23 instructors responded and volunteered to 
participate. These instructors also agreed to have the 
students of one of their current courses, as some 
instructors were teaching more than one course, 
contacted and invited to participate. All students in the 
23 classes were sent email invitations and 322 students 
across the 23 courses volunteered to participate.  A 
random draw for four gift cards for campus student 
businesses was used as an incentive.  

Student participation by course varied, from four in 
the sole fourth-year course to 23 in a second-year 
course. On average the participation rate by course was 
roughly 15%. However, this study concerns students 
and instructors grouped by course year. The numbers 
for this partitioning are in Table 1. Since there was only 
one fourth-year course, and since this course had only 
four study participants, the course was grouped with the 
third-year courses to create the third/fourth-year 
category. A comparison between the mean course grade 
of each course sample with that of the entire course 
revealed no systematic sample bias (results not 
reported). Therefore, there is no evidence to suggest the 
samples are not representative. 
  
Measures 

The students and instructors completed a version of 
the Conceptions of Mathematics Questionnaire (CMQ) 
(Crawford et al., 1998a). The CMQ used in this study 
and the preambles given to the students and instructors 
are found in the Appendix. The CMQ gives scores to a 
participant on two scales that correspond to fragmented 
and cohesive conceptions of mathematics. Fragmented 
conceptions comprise viewing mathematics as 
essentially a computational system and a body of 
factual knowledge.  Cohesive conceptions involve 
viewing mathematics as a system of logic inspired by, 
and useful in, solving authentic problems. Facts and 
procedures are still present, and a cohesive conception 
views these as facets of a totality.  

These two scales derive from a phenomenographic 
study in which students responded to the question, 
“Think about the maths you've done so far. What do 
you think mathematics is?” (Crawford et al., 1994). 
Two themes emerged. Some students described 
mathematics as the study of numbers and their 
applications in other disciplines. Views like these were 
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Table 1 
Number of Students and Instructors/Courses by Course Year 

Year Number of Students Number of Instructors/Courses 
1st 169 11 
2nd 100 6 

3rd/4th 53 6 
 
 
classified as fragmented conceptions of mathematics. 
Those with cohesive conceptions tended to describe 
mathematics as a logical or abstract system that is 
applicable to the study of the physical world, but also as 
a system that itself can be studied. These survey 
responses were used to generate the CMQ (Crawford et 
al., 1998). Since the questionnaire's initial publication it 
has been used with, and validated for, a variety of 
different populations (Alkhateeb, 2001; Liston & 
O'Donoghue, 2009; Macbean, 2004; Mji, 1999; Mji, 
2003; Mji & Alkhateeb, 2005; Mji & Klaas, 2001). The 
initial publication on the CMQ (Crawford et al., 1998a) 
reports excellent internal consistency, in terms of 
Cronbach's alpha, for both fragmented (α = 0.85, post-
test) and cohesive (α = 0.88, post-test) scales, which has 
been confirmed in the subsequent publications cited 
previously. 

The fragmented and cohesive scales are not 
mutually exclusive, though reported as such in at least 
one study (Mji, 2003). Some of the statements in the 
CMQ that correspond to a fragmented conception may 
be agreed with by someone who holds a strongly 
cohesive conception of mathematics. This is not an 
inconsistency. Indeed, an applied mathematician may 
agree that mathematics is “...about formulae and 
applying them to everyday life and situations,” 
(fragmented) while simultaneously agreeing that 
“[m]ath is a logical system which helps to explain the 
world around us” (cohesive). Or, perhaps less apparent, 
a number theorist may agree that “[f]or me, math is the 
study of numbers,” (fragmented) and that “[m]ath is 
like a universal language which allows people to 
communicate and understand the universe” (cohesive). 
As Crawford and colleagues (1994) identify, a cohesive 
conception of mathematics encompasses aspects of 
fragmented conceptions, such as mathematics as 
procedures, though the scope of these aspects is wider 
and is a part of a greater connected whole for one who 
holds a cohesive conception of mathematics.  

 
Analysis of Data 

The CMQ survey responses for both instructors 
and students were first analyzed separately to verify 
underlying factors and validity. Since the CMQ has not 
previously been used with a demographic comparable 
to the current one, a principal component analysis with 

varimax rotation was performed for both the student 
and instructor data, and the results are reported in Table 
2. The aggregate student data confirms the factor 
structure first reported in Crawford and colleagues 
(1998b). The student data was subsequently broken 
down into first, second, and third/fourth year sets, and 
analyses on these data reveal the same factor structure 
for these subsets of the sample (results are not 
reported). As was found in Crawford and colleagues 
(1998b), item 15 was revealed to be inconsistent and 
was dropped from further analyses.  

The analysis of the instructor survey responses also 
reveals the expected factor structure; see Table 2. 
Though the sample was much smaller (n = 23) than 
typically recommended sizes for such an analysis—
recommendations that can vary widely (Mundfrom, 
Shaw, & Ke, 2005)—the loadings on the two factors 
are quite favorable (de Winter, Dodou, & Wieringa, 
2009). Many of the large positive covariances loading 
on one factor were matched with large negative 
covariances loading on the other factor. However, some 
of the variables are worthy of examination: item 4 loads 
only weakly on factor 1, and item 6 is somewhat 
inconsistent. Both were retained in subsequent analysis, 
with item 4 being attributed to factor 1 and item 6 
attributed to factor 2. Also, item 15 was revealed to 
load on factor 1 and have a negative covariance with 
factor 2, a result originally anticipated by Crawford and 
colleagues (1998b). Item 15 was dropped from further 
analyses to correspond to the student survey data. 

A test of internal consistency using Cronbach's 
alpha was also performed (Cronbach, 1951). Results are 
reported in Table 3. Both scales for both student and 
instructor samples show strong internal consistency. 
Considering comparisons are made between subsets of 
these samples determined by course year, further 
reliability analyses were performed on these subsets. 
The results are in Table 4. As is shown, good to 
excellent reliability exists for both students and 
instructors in the three given year categories.  

Having confirmed the factor structure and 
reliability of the two samples, comparisons are made 
between the year subsets. Figure 1 presents the mean 
student and instructor CMQ scores for both the 
fragmented and cohesive scales, and Table 5 reports the 
difference in means of instructor and student CMQ 
scores. Note that a positive value indicates the
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Table 2  
Student and Instructor Conceptions of Mathematics Questionnaire Factor Analysis 

  Students Instructors 
 Items Factor 1 Factor 2 Factor 1 Factor 2 

Fragmented Items Q1 0.71 -0.13- 0.88 0.01 
Q2 0.57 -0.06- 1.27 -0.34- 
Q4 0.52 -0.34- 0.24 0.05 
Q5 0.72 -0.11- 0.79 -0.42- 
Q7 0.63 0.11 0.87 -0.33- 
Q9 0.70 0.06 0.93 -0.30- 

Q12 0.53 0.11 0.64 -0.38- 
Q13 0.73 0.08 0.99 -0.49- 
Q16 0.65 0.08 1.13 -0.34- 
Q18 0.62 0.11 0.60 -0.25- 

Cohesive Items Q3 -0.05- 0.40 -0.60- 0.69 
Q6 0.07 0.55 0.32 0.81 
Q8 -0.04- 0.66 -0.34- 0.54 

Q10 0.08 0.73 -0.20- 0.62 
Q11 0.01 0.72 -0.16- 0.57 
Q14 0.11 0.50 -0.17- 0.56 
Q15 0.56 0.32 0.58 -0.21- 
Q17 0.03 0.54 -0.24- 0.66 

Note. Covariances reported 
 
 

Table 3  
Conceptions of Mathematics Scale Items and Internal Consistency 

 Cronbach’s alpha 
Scale and Representative Item Students Instructor 

Fragmented                            
Mathematics is about playing around with numbers and working out 
numerical problems. 

0.85 0.94 

Cohesive                        
Mathematics is a theoretical framework describing reality with the aim of 
helping us understand the world. 

0.83 0.85 

 
 

Table 4 
Conceptions of Mathematics Internal Consistency by Course Year 

 Cronbach’s alpha 
 Student Instructor 

Year Fragmented Cohesive Fragmented Cohesive 
1 0.80 0.85 0.90 0.88 
2 0.85 0.83 0.72 0.82 

3 / 4 0.90 0.75 0.90 0.75 
 
 
instructor mean was greater than the student mean 
while a negative value indicates the instructor mean 
was less than the student mean. Welch's t-Tests (Welch, 
1947) were conducted on the differences between 
means, and the resulting p values are reported in the 
Table 5. It was found that the mean fragmented score 

for the instructors (First Year (FY): M = 3.75, SD = 
0.63; Second Year (SY): M = 3.45, SD = 0.34) was 
higher than the mean fragmented score for the students 
(FY: M = 3.52, SD = 0.54; SY: M = 3.13, SD = 0.64) in 
the first two years; not statistically significant for the 
first year, but significant for second year, t(7) = 2.05, p 
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Figure 1  
Average Fragmented and Cohesive CMQ Scores for Instructors (Circles) and Students (Squares) 

 
Table 5 

Difference Between Instructor and Student Mean CMQ Scores  
 Difference in Mean Scores Significance (p=___) Effect Size (d=____) 

Year Fragmented Cohesive Fragmented Cohesive Fragmented Cohesive 
1 0.24 -0.73 0.11 0.002 0.43 -1.23 
2 0.32 -0.58 0.04 0.02 0.50 -1.03 

3 / 4 -0.72 -0.03 0.05 0.56 -0.89 -0.07 
Note. A positive (resp. negative) difference indicates the instructor mean was greater (less) than the student mean. 
 
 
 = 0.04. This result is reversed in the third- and fourth-
year group. There the instructors' mean fragmented 
score (M = 2.22, SD = 0.89) is significantly less than 
the students' mean fragmented score (M = 2.93, SD = 
0.80), t(6) = -1.89, p = 0.05. In all years the 
instructors' mean cohesive score is less than the 
students' mean cohesive score, very significantly for 
the first two years (t(11) = -3.76, p < 0.01 and t(6) = -
2.74, p = 0.02, respectively), but not significant for 
the third and fourth years.  

An effect size analysis was performed using 
Cohen's d (Cohen, 1988) to understand better the 
relative differences in the means. These values are 
reported in Table 5. The effect size for the differences 
in mean fragmented conception scores in the first two 
years are moderate (FY: d = 0.43; SY: d = 0.50) and 
large for the final two years, d = 0.89. For the 
differences in the mean cohesive conception scores, the 
effect is large in the first two years and practically nil in 
the last two.  

Since there is such a marked difference in the 
instructors' perspectives in the first two and the last two 
years, it is worthwhile to evaluate if there is a similar 
difference in the students' conceptions. Table 6 reports 
the differences in student conceptions between years. 

There is a very significant negative difference in mean 
fragmented score between first and second year, t(181) 
= -5.00, p < 0.01, and a somewhat significant negative 
difference in mean fragmented score between second 
and third/fourth year, t(88) = -1.56, p = 0.06. There are 
slight positive differences in mean cohesive scores, but 
neither of these differences is significant. 
 

Summary of Results 

When asked to complete the conceptions of 
mathematics questionnaire as they think their 
archetypal student would, instructors in the first two 
years score, on average, significantly higher on the 
fragmented scale and significantly lower on the 
cohesive scale than their students. Instructors in the last 
two years score, on average, significantly lower on the 
fragmented scale and somewhat lower on the cohesive 
scale than their students.  

There is a marked difference between first/second 
year and third/fourth year instructors' fragmented and 
cohesive scores. This suggests the possibility that there 
is a significant difference between how instructors of 
lower and upper-year courses perceive their students' 
conceptions of mathematics. 
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Table 6 
Difference in Student Average CMQ Scores Between Years 

 Fragmented Cohesive 
Year Average Difference Significance 

(p=___) 
Average Difference Significance 

(p=___) 
1 3.52 N/A N/A 3.95 N/A N/A 
2 3.13 -0.34 p ≈ 0 3.96 0.01 .57 

3 / 4 2.93 -0.20 0.06 4.00 0.05 0.70 
 
 

Students, on average, have greater fragmented 
conceptions of mathematics in the first two years than 
in the last two, but they are fairly consistent in their 
cohesive views across all years. This contrasts with 
their instructors' difference in perspective.  

 
Discussion 

This study has found that university math 
instructors may perceive their students as conceiving 
mathematics differently than what they actually do. 
Lower-year instructors perceive their students to have 
greater fragmented conceptions and much lower 
cohesive conceptions, while upper-year instructors 
perceive their students to have much less fragmented 
conceptions. Essentially, there is a clear divide between 
how instructors of early year and later year courses 
think their students view mathematics. This stands in 
contrast to how the students actually view mathematics. 
First year students hold much higher fragmented 
conceptions than later, third/fourth-year students—
which is expected, as many of the first year courses are 
“service” courses taken by students in programs where 
math is otherwise not a major component. These first-
year courses are, for many students, terminal in that 
they are the extent of university mathematics these 
students will experience. But even though there is a 
prominence of fragmented conceptions in the earlier 
years, instructors overestimate how prominent these 
conceptions are. Though these conceptions are lower in 
the later years, upper-year instructors underestimate 
how widely held they actually are. Instructors in all 
years underestimate their students' cohesive 
conceptions of mathematics, albeit less so in upper 
years. Perhaps what makes the perceptual difference 
between early- and later-year instructors even more 
profound is that the students present essentially the 
same cohesive views of mathematics across all 
undergraduate years. That is, the instructors' perceptual 
differences do not correspond to a difference presented 
by the students.  

How the current work may be used to inform 
practice remains to be seen. It is likely that an 
instructors' perception of their students, including how 
they view the subject, informs what experiences the 

instructor provides the students. This may, in turn, 
make for tasks and assessments that conflict with how 
the students view the subject. For example, if an 
instructor believes their students hold fragmented, 
procedure-oriented conceptions of mathematics, they 
may think the students are not prepared for a 
conceptually-oriented task. This may be a missed 
opportunity, and such a disconnect can have profound 
implications for student development. When learning 
tasks are aligned with the skills and perspectives 
brought by the students, all students are capable of 
taking a deeper approach to learning (Biggs, 1999; 
Biggs & Tang, 2011). 

It is well established that a component of effective 
education involves activating students' prior 
knowledge. The most successful education connects all 
new experiences to students' prior knowledge 
(Ambrose, Bridges, DiPietro, Lovett, & Norman, 2010; 
Ausubel, Novak, & Hanesian, 1978; Resnick, 1983). If 
an instructor's perception of their students' prior 
knowledge does not align with their actual prior 
knowledge, then this connection cannot be made. As 
Ambrose and colleagues (2010) identify, “...it is critical 
to assess the amount and nature of students' prior 
knowledge so that we can design our instruction 
appropriately.” As it stands, it is not a common practice 
for instructors to assess their students' prior knowledge. 
Without such an assessment, an instructor is left to 
make assumptions about the composition and nature of 
students' prior knowledge. These assumptions may not 
be accurate, creating a disconnect between what is to be 
learned and what has been learned. 

In university introductory mathematics courses, 
instructors are currently witnessing dramatic year-to-
year differences in the prior mathematical experiences 
brought with students entering from high school. 
Primary and secondary math education focuses more 
and more on conceptual aspects of mathematics and 
downplays algorithms and calculations. These 
experiences shape how students view the subject. The 
shift in focus to concepts in primary and secondary 
school necessitates a corresponding shift to concepts in 
introductory university-level mathematics courses, 
which are currently often procedure-heavy service 
calculus courses. Without such a shift, the transition 
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from high school to the university—well documented 
as a chasm between university expectations and student 
abilities (De Guzman, Hodgson, Robert, & Villani, 
1998)—will be all the more difficult, and student 
outcomes are likely to decline. Despite this need, first-
year mathematics courses have remained largely static 
in their content and delivery over the last few decades. 
This disconnect between first-year instructors' 
expectations and entering students' abilities is 
exasperated by instructors' inaccurate perceptions of 
their students' views of mathematics (Engelbrecht et al., 
2005). Instructors think there is a match between the 
procedure-heavy first-year curriculum and their, 
perceived to be, procedurally-minded students. Students 
who are less procedurally-minded under-perform in 
these courses, causing instructors to think of their 
students as having impoverished procedures. The 
instructor in a subsequent iteration of the course 
incorporates this experience by focusing further on 
procedures. All along, the focus is on fragmented 
conceptions of mathematics when it ought to be on 
cohesive conceptions.  

This disconnect may not be unique to the high 
school/university transition. The results of this study 
indicate that a similar disconnect appears between the 
lower and upper years of the university. For 
mathematics there is a tangible difference between 
lower and upper year courses. Lower year courses are 
often service courses, and this is reflected in the 
curricula through an emphasis on procedures and 
applications. Few upper year courses are intended as 
service courses, and the curricula are more concept-
focused. The ways these two types of curricula are 
enacted also differs substantially. Tasks and 
assessments given to first-year students typically 
involve solving large numbers of short, procedure-
based problems. In upper-year courses the students are 
most commonly assessed on their understanding of 
theorems and how they might be applied. It is perhaps 
this difference in course emphasis that leads instructors 
to view their students differently.  

The marked divide between lower- and upper-year 
instructors' perceptions is especially surprising given that 
upper-year students were once lower year students. 
Granted, a good portion of the students that hold 
fragmented conceptions leave the mathematics course 
streams after the first year to pursue their non-
mathematics-oriented specializations. But, nonetheless, the 
underestimation by upper-year instructors of fragmented 
conceptions held by their students seems to suggest that 
instructors may assume the students that continue in 
mathematics are undergoing a shift in their conceptions of 
mathematics in their first two years. The data reported here 
indicates that such a shift may not be actually occurring. 
Indeed, procedure-heavy service courses may only serve 
to reinforce students' fragmented conceptions.  

Of course, the above claims, though likely, need to 
be substantiated. Students' perspectives of their 
instructors, learning situations, subjects, etc., have all 
been extensively studied (Prosser & Trigwell, 1999). 
Instructors' perceptions of their students, on the other 
hand, seems to be an almost entirely unexplored 
domain. It is a potentially interesting and insightful 
domain, given the results of the current study. 
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